Microglial activation of p38 contributes to scorpion envenomation-induced hyperalgesia.
نویسندگان
چکیده
Intraplantar (i.pl.) injection of BmK I, a receptor site 3-specific modulator of voltage-gated sodium channels (VGSCs) from the venom of scorpion Buthus martensi Karsch (BmK), was shown to induce long-lasting and spontaneous nociceptive responses as demonstrated through experiments utilizing primary thermal and mirror-imaged mechanical hypersensitivity with different time course of development in rats. In this study, microglia was activated on both sides of L4-L5 spinal cord by i.pl. injection of BmK I. Meanwhile, the activation of p38/MAPK in L4-L5 spinal cord was found to be co-expressed with OX-42, the cell marker of microglia. The unilateral thermal and bilateral mechanical pain hypersensitivity of rat induced by BmK I was suppressed in a dose-dependent manner following pretreatment with SB203580 (a specific inhibitor of p-p38). Interestingly, microglia activity was also reduced in the presence of SB203580, which suggests that BmK I-induced microglial activation is mediated by p38/MAPK pathway. Combined with previously published literature, the results of this study demonstrate that p38-dependent microglial activation plays a role in scorpion envenomation-induced pain-related behaviors.
منابع مشابه
Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia.
BACKGROUND Recent studies have implicated the activation of stress-activated mitogen-activated protein kinase (MAPK) p38 in spinal microglial cells for development of neuropathic and inflammatory pain. The aim of the present study was to investigate whether phosphorylation of p38 (p-p38) also mediates mechanical allodynia and thermal hyperalgesia induced by plantar incision. METHODS After rat...
متن کاملCdk5 contributes to inflammation-induced thermal hyperalgesia mediated by the p38 MAPK pathway in microglia
BACKGROUND The mechanisms underlying cyclin-dependent kinase 5 (Cdk5)-mediated thermal hyperalgesia induced by inflammation remain poorly understood. In the present study, we examined thermal hyperalgesia provoked by peripheral injection of complete Freund׳s adjuvant (CFA) to test for Cdk5 signaling in the spinal dorsal horns of rats through the p38 mitogen-activated protein kinase (p38 MAPK) s...
متن کاملNeutralizing effects of polyvalent antivenom on severe inflammatory response induced by Mesobuthus eupeus scorpion venom
This study evaluated the effects of Mesobuthus eupeus (Me) scorpion venom on inflammatory response following injection. Additionally, the present study examined whether immunotherapy at specific time intervals would be effective on inflammatory response after Me venom inoculation. Animals were divided randomly into four groups: the first group received LD50 of venom and the second and third gro...
متن کاملIntrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation
BACKGROUND Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. METHODS Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal n...
متن کاملGRK2: a novel cell-specific regulator of severity and duration of inflammatory pain.
Chronic pain associated with inflammation is a common clinical problem, and the underlying mechanisms have only begun to be unraveled. GRK2 regulates cellular signaling by promoting G-protein-coupled receptor (GPCR) desensitization and direct interaction with downstream kinases including p38. The aim of this study was to determine the contribution of GRK2 to regulation of inflammatory pain and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 440 3 شماره
صفحات -
تاریخ انتشار 2013